Indian Statistical Institute, Bangalore

B. Math. First Year

First Semester - Analysis I

Mid-Semester Exam

Date : Sept 08, 2014

[3]

This paper carries 25 marks. Maximum Marks you can get is 20.

1. Let $f: [1,\infty) \to [0,\infty)$ be any continuous decreasing function. Then show that

$$\sum_{1}^{\infty} f(j) \text{is summable} \Leftrightarrow \int_{1}^{\infty} f(u) du < \infty.$$

- 2. Let a_1, a_2, \ldots be any sequence of complex numbers. If $\sum_{1}^{\infty} |a_n|$ is summable, then $\sum_{1}^{\infty} a_n$ is summable. [2]
- 3. Let $\{x_1, x_2, \ldots\}$ be a sequence of nonzero complex numbers. Assume that

$$\limsup_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L < 1$$

Then $\sum_{1}^{\infty} |x_n| < \infty$ [3]

- 4. The series $\sum_{1}^{\infty} a_n b_n$ is summable if $A_n = a_1 + a_2 + \ldots + a_n$ is a bounded sequence and the sequence b_n decreases to 0. [4]
- 5. Let w_1, w_2, w_3 be the roots of $x^3 1 = 0$. Define $a_n = w_3$ if n is divisible $3, a_n = w_2$ if $n \equiv 2 \mod 3$ and $a_n = w_1$ if $n \equiv 1 \mod 3$. Show that $\sum_{1}^{\infty} \frac{a_n}{\log(n+100)}$ is summable. [3]
- 6. Let a_1, a_2, a_3, \ldots be a real sequence bounded below. Let $\alpha = \liminf_{j \to \infty} a_j$. Then for each $\delta > 0$, show that there exists k_0 such that $a_k \ge \alpha \delta$ for all $k \ge k_0$. [1] Discuss the summability of the following examples.

$$7. \sum_{n=1}^{\infty} p^n n^p \qquad p > 0 \qquad [3]$$

8. $\sum_{100}^{\infty} \frac{1}{n \log n (\log \log n)^p} \qquad p > 0$ [3]

9.
$$\sum_{100}^{\infty} n^p (\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}})$$
 [3]